如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)...

作者: tihaiku 人气: - 评论: 0
问题 如右图,在梯形ABCD中,点E、F分别是腰AB、CD上的点. (1)证明:如果E、F为中点时,有 EF=1/2(AD+BC); (2)请写出(1)中命题的逆命题,并判断该逆命题是否成立,若成立,请给予证明;若不成立,请说明理由.
选项
答案
解析 (1)证明:连接AC,设AC中点为日,连接EH、FH 逆命题不成立. 理由如下:连接AC,连接BD,延长AD至M使DM=AD,延长BC至N,使CN=AD,连接MN、DN.由DM平行且等于CN可知,DN平行且等于AC由ADBN可知,BD+DM>BN,即BD+AC>BC+AD 又AD<EF

相关内容:右图,梯形,证明,中点

猜你喜欢

更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>