设函数f(x)在(一∞,+∞)内连续,其中二阶导数f”(x)的图形如图所示,则曲线y(x)的拐点的个数为( )个。 A、0 B、1 C、2 D、3

作者: tihaiku 人气: - 评论: 0
问题 设函数f(x)在(一∞,+∞)内连续,其中二阶导数f”(x)的图形如图所示,则曲线y(x)的拐点的个数为( )个。
选项 A、0 B、1 C、2 D、3
答案 C
解析 拐点出现在二阶导数等于零,或二阶导数不存在的数,并且在这点的左右两侧二阶导函数异号。因此,由f”(x)的图形可得,曲线y=(x)存在两个拐点。

猜你喜欢

更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>