数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题。用数形结合思想解题能简化推理和运算,具有直观、快捷...

作者: tihaiku 人气: - 评论: 0
问题 数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题。用数形结合思想解题能简化推理和运算,具有直观、快捷的优点。请简要谈谈数形结合思想在解哪些类型的问题时可以发挥作用,使问题得到更好的解决。
选项
答案
解析 (1)在解方程或解不等式的问题中,若方程或不等式中的代数式能分拆成一次函数、二次函数、对数函数、指数函数和三角函数等形式,则一般可利用函数的图象直观地使问题获得解决; (2)复数与三角函数概念的建立离不开直角坐标系,因此这些概念含有明显的几何意义,采用数形结合解决此类问题非常直观清晰; (3)二元一次方程、二元二次方程能与直线、二次曲线相对应,用数形结合法解此类问题,能在解题过程中充分利用平面几何和解析几何的知识,使解题思路更开阔。

相关内容:数形,思想,数学,实质,就是,根据,形之,关系,用数,推理,运算

猜你喜欢

更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>