已知四棱锥P-ABCD底面为直角梯形,AB平行于DC,∠DAB=90°,PA垂直于底面ABCD,PA=AD=DC= AB=1,M为PB中点。...

作者: tihaiku 人气: - 评论: 0
问题 已知四棱锥P-ABCD底面为直角梯形,AB平行于DC,∠DAB=90°,PA垂直于底面ABCD,PA=AD=DC= AB=1,M为PB中点。 (1)求证:面PAD⊥面PCD; (2)求面AMC与面BMC所成二面角的余弦值。
选项
答案
解析 (1)∵PA⊥面ABCD,CD⊥AD, ∴由三垂线定理,得CD⊥PD。 因而,CD与面PAD内两条相交直线AD,PD都垂直, ∴CD⊥面PAD。 又CD面PCD,∴面PAD⊥面PCD。 (2)作AN⊥CM,垂足为N,连结BN。 在Rt△PAB中,∵M是斜边PB中点, ∴AM=MB.
更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>