作者: tihaiku 人气: - 评论: 0
问题
选项
答案
解析 (1)f'(x)=ex+4x-3,则f'(1)=e+1,又f(1)=e-1,∴曲线y=f(x)在点(1f(1))处的切线方程为y-e+1=(e+1)(x-1),即(e+1)x-y-2=0。(2)∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,∴f'(0)·f'(1)<0,令h(x)=f'(x)=ex+4x-3, 则h'(x)=ex+4>0,∴f'(x)在[0,1]上单调递增,∴f'(x)在[0,1]上存在唯一零点, ∴f(x)在[0,1]上存在唯一的极值点。 取区间[0,1]作为起始区间,用二分法逐次计算如下: 由上表可知区间[0.3,0.6]的长度为0.3,所以该区问的中点x0=0.45,到区间端点距离小于0.2,因此可作为误差不超过0.2的一个极值点的相应x的值。∴y=f(x)取得极值时,相应x≈0.45。

相关内容:

猜你喜欢

更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>