设|A|=0,α1、α2、是线性方程组Aχ=0的一个基础解系,Aα3=α3≠0,则下列向量中不是矩阵A的特征向量的是( )。A、3α1+α2 B、α1-...

作者: tihaiku 人气: - 评论: 0
问题 设|A|=0,α1、α2、是线性方程组Aχ=0的一个基础解系,Aα3=α3≠0,则下列向量中不是矩阵A的特征向量的是( )。
选项 A、3α1+α2 B、α1-3α2 C、αl+3α3 D、3α3
答案 C
解析 因为α1、α2是线性方程组Ax=0的一个基础解系,所以Aα1=Aα2=0。对于选项A有A(3α1+α2)=3Aα1+Aα2=0,所以是A的特征向量;同样选项B也是矩阵A的特征向量;对于选项D,由于Aa3=a3≠0,所以A(3a3)=3Aα3=3α3,故D也是矩阵A的特征向量;至于选项C,A(αl+3α3),Aα1+3Aα3=3α3不能写成m(α1+3α3)的形式,所以C不是矩阵A的特征向量。

相关内容:线性,方程组,基础,解系,向量,不是,矩阵,特征

猜你喜欢

更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 知识的智慧 Inc. 保留所有权利。 Powered by cengyan.com

页面耗时0.0198秒, 内存占用1.05 MB, Cache:redis,访问数据库14次

鲁ICP备17016787号-14