甲、乙、丙三人沿圆形跑道跑步,同时从跑道某一固定点出发,甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙2分钟后遇到丙,再过8分钟第二次遇到乙。...

作者: tihaiku 人气: - 评论: 0
问题 甲、乙、丙三人沿圆形跑道跑步,同时从跑道某一固定点出发,甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙2分钟后遇到丙,再过8分钟第二次遇到乙。已知乙的速度是甲的2/3,圆形跑道的周长为600米,则丙的速度为( )。
选项 A. 14米/分 B. 15米/分 C. 16米/分 D. 17米/分
答案 A
解析 行程问题。在环形相遇问题中,任意两者相遇一次所走的路程和为一个周长,因此,甲与乙第二次相遇共走的路程(1200米)是第一次相遇共走的路程(600米)的2倍,由于二者速度不变,设第一次的相遇所用时间为t,则第二次相遇时间应为2t,根据题意有2t=t+2+8,解得t=10分钟。再设甲、乙、丙的速度分别为、、,则(+)10=600,(+V丙)(10+2)=600,又,解得=36米/分,=14米/分。故本题选择A。

相关内容:圆形,跑道,同时,定点,甲按,方向,丙按,第一次,2分钟,8分钟,第二次

猜你喜欢

更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 曾言题库 Inc. 保留所有权利。 Powered by cengyan.com

页面耗时0.0218秒, 内存占用1.05 MB, Cache:redis,访问数据库14次

鲁ICP备17016787号-14