设A是一个mxn矩阵,证明:矩阵A的行空间维数等于它的列空间维数。

作者: tihaiku 人气: - 评论: 0
问题 设A是一个mxn矩阵,证明:矩阵A的行空间维数等于它的列空间维数。
选项
答案
解析 证明设矩阵行空间的维数为r,列空间维数为rl’ α1,α2,…αn为矩阵A的行向量组,不妨设αl,α2,…αγ为一组基所以方程组只有零解.即线性方程绸只有零解,则其系数矩阵的行向量空间的维数≥r, 因此它的行向量组可以找到r个线性无关的向量,不妨设为也线性无关.它们正好是矩阵A的r个列向量,则矩阵A的列空间的维数r。≥r。 同理可证r≥rl,所以r=n,即矩阵A行空间的维数等于它列空间的维数。

猜你喜欢

更多 网友评论0 条评论)
暂无评论
错误啦!

错误信息

  • 消息: [程序异常] : MISCONF Redis is configured to save RDB snapshots, but it's currently unable to persist to disk. Commands that may modify the data set are disabled, because this instance is configured to report errors during writes if RDB snapshotting fails (stop-writes-on-bgsave-error option). Please check the Redis logs for details about the RDB error.
  • 文件: /twcms/kongphp/cache/cache_redis.class.php
  • 位置: 第 85 行
    <?php echo 'KongPHP, Road to Jane.'; ?>